Kyra

pchem hashtag performance

#pchem is a vibrant TikTok community focused on physical chemistry, featuring engaging experiments, educational content, study tips, molecular interactions, lab techniques, interactive demonstrations, and fostering collaboration among chemistry enthusiasts and learners.
I’ve never been so confused in my whole career #pchem #pbiochem #physicalchemistry #biochem #biochemistry #biochemistrymajor #biochemist #ucla #chem #chemist #chemistry #biochemistrystudent #uni #univeristy #college #collegethings #collegelife #student #studywithme #studytok #studentlife #stem #sciencetok #scientist
follow for more chem study guides "The postulates of the kinetic molecular theory of gases ignore both the volume occupied by the molecules of a gas and all interactions between molecules, whether attractive or repulsive. In reality, however, all gases have nonzero molecular volumes. Furthermore, the molecules of real gases interact with one another in ways that depend on the structure of the molecules and therefore differ for each gaseous substance. In this section, we consider the properties of real gases and how and why they differ from the predictions of the ideal gas law. We also examine liquefaction, a key property of real gases that is not predicted by the kinetic molecular theory of gases. For an ideal gas, a plot of PV/nRT versus P gives a horizontal line with an intercept of 1 on the PV/nRT axis. Real gases, however, show significant deviations from the behavior expected for an ideal gas, particularly at high pressures (part (a) in Figure 11.1.1 ). Only at relatively low pressures (less than 1 atm) do real gases approximate ideal gas behavior (part (b) in Figure 11.1.1 ). Real gases also approach ideal gas behavior more closely at higher temperatures, as shown in Figure 11.1.2 for N2. Why do real gases behave so differently from ideal gases at high pressures and low temperatures? Under these conditions, the two basic assumptions behind the ideal gas law—namely, that gas molecules have negligible volume and that intermolecular interactions are negligible—are no longer valid." #genchem #pchem #chemistry #physics #gaslaws #pvnrt #science #chemistrymajor
1.8k
follow for more chem study guides "The postulates of the kinetic molecular theory of gases ignore both the volume occupied by the molecules of a gas and all interactions between molecules, whether attractive or repulsive. In reality, however, all gases have nonzero molecular volumes. Furthermore, the molecules of real gases interact with one another in ways that depend on the structure of the molecules and therefore differ for each gaseous substance. In this section, we consider the properties of real gases and how and why they differ from the predictions of the ideal gas law. We also examine liquefaction, a key property of real gases that is not predicted by the kinetic molecular theory of gases. For an ideal gas, a plot of PV/nRT versus P gives a horizontal line with an intercept of 1 on the PV/nRT axis. Real gases, however, show significant deviations from the behavior expected for an ideal gas, particularly at high pressures (part (a) in Figure 11.1.1 ). Only at relatively low pressures (less than 1 atm) do real gases approximate ideal gas behavior (part (b) in Figure 11.1.1 ). Real gases also approach ideal gas behavior more closely at higher temperatures, as shown in Figure 11.1.2 for N2. Why do real gases behave so differently from ideal gases at high pressures and low temperatures? Under these conditions, the two basic assumptions behind the ideal gas law—namely, that gas molecules have negligible volume and that intermolecular interactions are negligible—are no longer valid." #genchem #pchem #chemistry #physics #gaslaws #pvnrt #science #chemistrymajor

start an influencer campaign that drives genuine engagement